
Secure Multiparty Computation for Cooperative
Cyber Risk Assessment

Kyle Hogan, Noah Luther, Nabil Schear, Emily Shen, David Stott, Sophia Yakoubov, Arkady Yerukhimovich
MIT Lincoln Laboratory

Emails: {kyle.hogan, noah.luther, nabil, emily.shen, david.stott, sophia.yakoubov, arkady}@ll.mit.edu

A common problem organizations face is determining how
to prioritize security updates and patches to minimize the
risk of vulnerabilities in their infrastructure. Limited resources
constrain organizations to select a set of only the most security
critical updates that they can afford to perform; thus, it is very
important to compute the risk of delaying less critical updates
accurately [9]. Organizations can improve the accuracy of their
cyber risk assessments by pooling their data in order to account
for attacks that others have experienced [7]. However, privacy
concerns may prevent this type of information sharing, as
organizations are understandably unwilling to reveal details
pertaining to current vulnerabilities or past attacks, which
could be damaging to both their security and their reputation.

We propose the use of secure multiparty computation
(MPC) to allow organizations to perform joint analytics
while maintaining the confidentiality of their own data. MPC
protocols were first proposed in the 1980s (e.g., [11], [5],
[1]), and several frameworks for implementing MPC have
been developed over the last decade (e.g., [4], [3], [2]). For
overviews of MPC and other secure computation techniques
see, e.g., [10], [8], [6]. Using MPC, parties P1, . . . , Pn hav-
ing private input data x1, . . . , xn can compute a function
(y1, . . . , yn) = f(x1, . . . , xn) so that each party Pi learns only
its intended output yi and nothing more. In the setting of cyber
risk assessment, organizations can compute relevant statistics
and analyses on the global infrastructure while keeping the
details of their local infrastructure and vulnerabilities private.
Thus, MPC enables the desired level of collaboration while
overcoming the privacy concerns of information sharing.

Two computations with such concerns are selecting IP
addresses to blacklist and aggregating the output from vul-
nerability scanners. IP blacklists must walk the line between
being so permissive that they fail to block malicious addresses
and retaining so many addresses that enforcing the blacklist
becomes unmanageable. Each organization would like to learn
which addresses its peers have blacklisted so it can decide
which addresses it should add and which older addresses it
can remove. Similarly, each organization can better prioritize
its security updates by learning which vulnerabilities were
common and which patches its peers had applied. Aggregating
the output of vulnerability scanners, including the severity
and number of vulnerabilities and patch recommendations,

This work is sponsored by the Assistant Secretary of Defense for Research and Engineering (ASDR&E) under Air
Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and
are not necessarily endorsed by the United States Government.

would allow organizations to identify issues seen on their
peers’ infrastructures but not yet on their own and focus their
resources on remedying them proactively.

We designed and implemented MPC protocols for the IP
blacklist and vulnerability data aggregation applications de-
scribed above. For the IP blacklist application we implemented
a threshold set union protocol that takes a list of private IP
addresses from each party and returns a list of the addresses
that occur more than some threshold number of times. For
the vulnerability data aggregation application we design a
protocol that takes as input a set of private key-value pairs
from each party and sums values with matching keys. For
example, letting keys be vulnerability identifiers and values
be the number of vulnerable machines, this protocol computes
the total number of machines with each vulnerability. By
letting keys be vulnerability severities and values be counts
of machines with that vulnerability, this protocol also allows
parties to compute the global average severity of their known
vulnerabilities.

A number of MPC-specific performance issues arise when
building protocols for these applications. Therefore, it is
necessary to carefully consider precisely what to compute. For
example, the running time of the threshold set union protocol
grows significantly with input size. Organizations can improve
the running time by choosing to run the protocol on subsets
of their full blacklist such as only the oldest addresses or only
the newest addresses. For the data aggregation application,
the most expensive operations are the comparisons used to
determine whether two keys match. Applications that do not
require keys to be secret, such as the average vulnerability
severity computation described above, will be much faster
than applications where the keys must be kept private. Thus,
determining the appropriate variant to use depends on the
exact functionality desired as well as privacy and performance
requirements.

In this talk, we describe the design, implementation, and
evaluation of MPC protocols for cooperative cyber risk assess-
ment. We discuss the impact of using different MPC frame-
works, input sizes, and privacy requirements on performance.
We also discuss tradeoffs between functionality, security, and
performance that enable the application of MPC to relevant
cyber risk assessment problems in practice.



REFERENCES

[1] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation
(extended abstract). In STOC, pages 1–10, 1988.

[2] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework
for fast privacy-preserving computations. In Computer Security -
ESORICS 2008, 13th European Symposium on Research in Computer
Security, Málaga, Spain, October 6-8, 2008. Proceedings, pages 192–
206, 2008.

[3] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dim-
itropoulos. SEPIA: privacy-preserving aggregation of multi-domain
network events and statistics. In 19th USENIX Security Symposium,
Washington, DC, USA, August 11-13, 2010, Proceedings, pages 223–
240, 2010.

[4] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus
Nielsen. Asynchronous multiparty computation: Theory and implemen-
tation. In Proceedings of the 12th International Conference on Practice
and Theory in Public Key Cryptography: PKC ’09, pages 160–179,
2009.

[5] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play
any mental game or a completeness theorem for protocols with honest
majority. In STOC, pages 218–229, 1987.

[6] Ariel Hamlin, Nabil Schear, Emily Shen, Mayank Varia, Sophia Yak-
oubov, and Arkady Yerukhimovich. Cryptography for big data security.
In Fei Hu, editor, Big Data: Storage, Sharing, and Security. CRC Press,
2016.

[7] Arjen Lenstra and Tim Voss. Information security risk assessment,
aggregation, and mitigation. In Australasian Conference on Information
Security and Privacy, pages 391–401. Springer Berlin Heidelberg, 2004.

[8] Emily Shen, Mayank Varia, Robert K. Cunningham, and W. Kon-
rad Vesey. Cryptographically secure computation. IEEE Computer,
48(4):78–81, 2015.

[9] Fabrizio Smeraldi and Pasquale Malacaria. How to spend it: Optimal
investment for cyber security. In Proceedings of the 1st International
Workshop on Agents and CyberSecurity, ACySE ’14, pages 8:1–8:4,
2014.

[10] Sophia Yakoubov, Vijay Gadepally, Nabil Schear, Emily Shen, and
Arkady Yerukhimovich. A survey of cryptographic approaches to
securing big-data analytics in the cloud. In High Performance Extreme
Computing Conference (HPEC), 2014 IEEE, pages 1–6, Sept 2014.

[11] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In FOCS, pages 162–167, 1986.


