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 Terminology

Layout Engine within Firefox
renders web content, such as (HTML, JS, CSS, etc.)

GECKO

NECKO Network Library within Firefox
loads resources over the internet
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LoadInfo {  
  Principal* loadingPrincipal;    

  ContentPolicyType contentPolicyType;

  SecurityFlags securityFlags;

}; 



 Providing Load Context

LoadInfo {  
  Principal* loadingPrincipal;    

  ContentPolicyType contentPolicyType;

  SecurityFlags securityFlags;

}; 



 LoadingPrincipal

Presents Security Context of web content

reflects origin of that content
Content 
Principal

System
Principal

Null
Principal

Reflects Sandboxed security context

only same origin with itself

Reflects Security Context of the system

bypasses all security checks



 Providing Load Context

LoadInfo {  
  Principal* loadingPrincipal;    

  ContentPolicyType contentPolicyType;

  SecurityFlags securityFlags;

}; 



 ContentPolicyType

SCRIPT

IMAGE

STYLE

FONT

IFRAME

AUDIO

VIDEO

FAVICON

…



 Providing Load Context

LoadInfo {  
  Principal* loadingPrincipal;    

  ContentPolicyType contentPolicyType;

  SecurityFlags securityFlags;

}; 



  SecurityFlags

REQUIRE_SAME_ORIGIN_DATA_INHERITS

REQUIRE_SAME_ORIGIN_DATA_IS_BLOCKED

ALLOW_CROSS_ORIGIN_DATA_INHERITS

ALLOW_CROSS_ORIGIN_DATA_IS_NULL

REQUIRE_CORS_DATA_INHERITS



 Performing Content Security Checks

LoadInfo {  
  Principal* loadingPrincipal         = https://good.com   

  ContentPolicyType contentPolicyType = TYPE_SCRIPT;

  SecurityFlags securityFlags         = ALLOW_CROSS_ORIGIN;

}; 
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400+ tests that verify network loads

20 months

One Engineer full time

Dozens of reviewers

518 changesets

126,322 lines of code (hg diff -p -U 8)

3,500 man hours
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Christoph Kerschbaumer


