
Enforcing Content Security By Default
within Web Browsers

Christoph Kerschbaumer



 Content Security Checks

File Access Permission

Same Origin Policy

Cross Origin Resource Sharing

Mixed Content Blocking

Content Security Policy

Subresource Integrity

…



 Content Security Checks

File Access Permission

Same Origin Policy

Cross Origin Resource Sharing

Mixed Content Blocking

Content Security Policy

Subresource Integrity

…



 Performing Content Security Checks

evil.com

GET good.com/library.js

response (redirect)
good.com

GET evil.com/attack.js

1

Content Security Policy: script-src good.com

Security Checks



 Performing Content Security Checks

evil.com

GET good.com/library.js

response (redirect)
good.com

GET evil.com/attack.js

1

Content Security Policy: script-src good.com

Security Checks



 Performing Content Security Checks

evil.com

GET good.com/library.js

response (redirect)
good.com

GET evil.com/attack.js

1

Content Security Policy: script-src good.com

Security Checks



 Performing Content Security Checks

evil.com

GET good.com/library.js

response (redirect)
good.com

GET evil.com/attack.js

1

Content Security Policy: script-src good.com

Security Checks



 Terminology

Layout Engine within Firefox
renders web content, such as (HTML, JS, CSS, etc.)

GECKO

NECKO Network Library within Firefox
loads resources over the internet



 Performing Security Checks Historically

GECKO

NECKO

Start Resouce Load

Security Checks

Next Resource Load

Initiate Resource Load Redirect



 Performing Security Checks By Default

GECKO

NECKO

Provide Load Context and
Start Resouce Load

Next Resource Load

Redirect
Security Checks

Initiate Resource Load



 Performing Security Checks By Default

GECKO

NECKO

Provide Load Context and
Start Resouce Load

Next Resource Load

Redirect
Security Checks

Initiate Resource Load

LoadInfo {  
  Principal* loadingPrincipal;    

  ContentPolicyType contentPolicyType;

  SecurityFlags securityFlags;

}; 



 Providing Load Context

LoadInfo {  
  Principal* loadingPrincipal;    

  ContentPolicyType contentPolicyType;

  SecurityFlags securityFlags;

}; 



 LoadingPrincipal

Presents Security Context of web content

reflects origin of that content
Content 
Principal

System
Principal

Null
Principal

Reflects Sandboxed security context

only same origin with itself

Reflects Security Context of the system

bypasses all security checks



 Providing Load Context

LoadInfo {  
  Principal* loadingPrincipal;    

  ContentPolicyType contentPolicyType;

  SecurityFlags securityFlags;

}; 



 ContentPolicyType

SCRIPT

IMAGE

STYLE

FONT

IFRAME

AUDIO

VIDEO

FAVICON

…



 Providing Load Context

LoadInfo {  
  Principal* loadingPrincipal;    

  ContentPolicyType contentPolicyType;

  SecurityFlags securityFlags;

}; 



  SecurityFlags

REQUIRE_SAME_ORIGIN_DATA_INHERITS

REQUIRE_SAME_ORIGIN_DATA_IS_BLOCKED

ALLOW_CROSS_ORIGIN_DATA_INHERITS

ALLOW_CROSS_ORIGIN_DATA_IS_NULL

REQUIRE_CORS_DATA_INHERITS



 Performing Content Security Checks

LoadInfo {  
  Principal* loadingPrincipal         = https://good.com   

  ContentPolicyType contentPolicyType = TYPE_SCRIPT;

  SecurityFlags securityFlags         = ALLOW_CROSS_ORIGIN;

}; 

evil.com

GET good.com/library.js

response (redirect)
good.com

GET evil.com/attack.js

1

Content Security Policy: script-src good.com

Security Checks



 Server Side Redirects



 Server Side Redirects



 Engineering Effort

100+ updated network loads

400+ tests that verify network loads

20 months

One Engineer full time

Dozens of reviewers



 Engineering Effort

100+ updated network loads

400+ tests that verify network loads

20 months

One Engineer full time

Dozens of reviewers

518 changesets

126,322 lines of code (hg diff -p -U 8)

3,500 man hours



 Thank You

Christoph Kerschbaumer


